
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

OCR Computer Science GCSE
2.2 – Programming fundamentals

Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

2.2.1 Programming fundamentals

Core Programming Statements

Statements Description Examples (pseudocode)

Variable
Declaration

Creates a variable to store data. Example:
name = "Alex"

Constant
Declaration

A value that does not change
while the program runs. Often
given fully uppercase identifiers.

Example:
PI = 3.14

Assignment Setting or updating a value in a
variable.

Example:
score = score + 10

Input Receiving data from the user. Example:
name = input(“Enter your
name”)

Output Displaying data or information to
the user.

Example:
output(“Hello World”)

Input and output statements may vary depending on if your code is written in program code
(e.g. Python) or pseudocode. For example, output in Python would be done with ‘print()‘,
whereas in pseudocode it is done with ‘output()‘.

Programming Constructs

There are three constructs used in algorithms, which help to make them structured, easy to
understand, and control the flow of the program:

1.​ Sequence – instructions executed in order​

2.​ Selection – decisions (IF, ELSE)​

3.​ Iteration – repetition (WHILE, FOR)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What Are Arithmetic Operations?

Arithmetic operations are the basic mathematical calculations that can be performed in a
programming language. These are essential for processing numerical data in algorithms and
programs.

Standard Arithmetic Operators

Operation Symbol Example Result

Addition + 3 + 2 5

Subtraction - 7 - 4 3

Multiplication * 5 * 3 15

Real Division / 10 / 4 2.5

Modulus (MOD) % 5 % 2 1

Quotient (DIV) // 8 // 3 2

Exponentiation ^ 4^2 16

Modulus returns the remainder of a division, for example, 7 % 4 would return 3.

Quotient returns the largest integer from a division result, for example, 11 // 2 would return 5.

Modulus is useful as it can be used to identify if a number is even or odd, for example:

-​ 12 % 2 = 0 (even)
-​ 13 % 2 = 1 (odd)

An odd number modulus 2 will always have a remainder of 1, whilst an even number has no
remainder.

Modulus and quotient division can be used to return both the integer and decimal parts of a
number after division. The full result can be obtained by adding the integer and decimal,
which is formed by dividing the remainder from the modulus division by the divisor.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What Are Comparison Operations?

Comparison operations are used to compare different items of data, and either return True
or False.

Standard Comparison Operators

Operation Symbol Example Result

Equal to == 5 == 5 True

Not equal to != 3 != 4 True

Less than < 2 < 5 True

Greater than > 6 > 7 False

Less than or equal to <= 5 <= 5 True

Greater than or equal to >= 7 >= 10 False

What Are Boolean Operations?

Boolean operations are logical operators that work with Boolean values (True or False).
They are used in conditions to control the flow of programs.

Boolean Operators

Operator Description Example Result

NOT Reverses the Boolean value. NOT True False

AND Returns True if both input conditions are
true.

True AND
True

True

OR Returns True if either input condition is true. True OR
False

True

Boolean operators can be combined in complex logic, such as:

if age > 18 AND height >= 155:
 allowEntry

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

2.2.2 Data types

What Are Data Types?

In programming, a data type defines the kind of data a variable or constant can hold. It tells
the program how the data will be stored, processed, and displayed - including which
operations can be performed on it.

Common Data Types

Term Description Examples

Integer (int) Whole numbers only, no decimals. 5, -20, 0

Real (float)

Numbers that include a
fractional/decimal part. Also called float
in some languages.

3.14, -0.5, 99.99

Boolean (bool) Often used for conditions and logic.

Only has two values: True
or False

Character (char) A single symbol or letter. Must be enclosed in
quotation marks (e.g., 'A',
'5', '#')

String (str) A sequence of characters. Examples: "Hello",
"123", "£$%"

Why Data Types Matter

●​ They help the computer understand how to store and manipulate data.
○​ For example, 123 is an integer, whereas “123” is a string – they are different

data types and so can undergo different operations.​

●​ Choosing the right data type ensures the program runs efficiently and without errors.​

●​ Some operations are only valid for certain types (e.g. you can’t divide strings).

Casting Data Types

Casting refers to changing data types of a variable, for example from integer to string:

●​ stringNumber = str(123)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

2.2.3 Additional programming techniques

What Is String Manipulation?

String manipulation refers to measuring the length of strings, concatenating strings (joining
strings together) or slicing strings (extracting substrings).

Key String Operations

Operation Description Example

length Returns the number of
characters in a string.

name = “Alice”
name.length() → 5

subString Extracts a sequence of
characters within a
string.

greet = “Hello World”
greet.subString(0, 5) → “Hello”
Note: first argument is the starting position,
second argument is the number of characters.

concatenation Joins strings together. "Hi" + " there" → "Hi there"

What Is File Handling?

File handling refers to the reading or writing to or from an external file.

Files must be opened in either ‘read’ or ‘write’ mode and closed after all file operations have
been performed.

File Handling Operations

Operation Code Text File (sample.txt)

Reading
from a file

myFile = openRead(“sample.txt”)
x = myFile.readLine()
print(x) Note: this prints “Good Morning!”
myFile.close()

Good Morning!

Writing to a
file

myFile = openWrite(“sample.txt”)
myFile.writeLine(“Goodbye”)
myFile.close()

Goodbye

Note: a file must be closed after an operation has been performed on it using myFile.close(). If
not, the changes and edits made to the file may not be saved.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What Is a Data Structure?

A data structure is a way of organising and storing related data so it can be used efficiently
in a program. It helps manage collections of data.

1. Records

What is a record?

●​ A data structure used to group different types of data under one structure.​

●​ Each field in a record can have a different data type.​

●​ Similar to a row in a database table.

Example:

2. Arrays

What is an array?

●​ A fixed-size data structure with a collection of similar data items (elements) stored
under a single name.​

●​ Each item is accessed using an index (position number).​

Characteristics:

●​ Items must be of the same data type.

●​ Indexing starts at 0.

●​ They are static (cannot change size/length during run-time)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

One-Dimensional Array (1D)

●​ A single list of items.​

●​ Example:​
 scores = [10, 20, 30]​
 scores[1] → 20​

Two-Dimensional Array (2D)

●​ An array of arrays (like a database table or grid).​

●​ Example:

To access a value in a 2D array, you need to use two indexes:

-​ The first index selects the row (the sub-array)
-​ The second selects the column (item within that sub-array).

For example: to return “Bob” you would need to write seating[0][1].

-​ 0 selects the first array (row): [“Alice”, “Bob”]
-​ 1 selects the second item within that array: “Bob”

You can think of a 2D array like a table or grid where:

-​ Each row is a separate array
-​ Each column is an item within those arrays

​ ​ ​ ​ ​ Column

 Row

 0 1

0 “Alice” “Bob”

1 “Cara” “Dan”

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What Is a Database?

A database is used to store large amounts of data into organised tables. Each column will
have a heading to define a field (column), for example:

employeeNo firstName lastName dateOfBirth

0013 Bob Smith 28/01/2001

In the example above, each row (record) will have a unique value to identify that row, in this
case it would be the employeeNo which is unique to every employee.

What Is Structured Query Language (SQL)?

SQL is a language used to search for, manage, and manipulate data in a database.

There are three main SQL commands: SELECT, FROM and WHERE.

●​ The SELECT command is used to retrieve information about a particular field in a
database

●​ The FROM command refers to the database being searched

●​ The WHERE command is used to apply conditions to a search

Table: Cars

Model Manufacturer Price Year Sold

Polo Volkswagen 4995 2010 TRUE

i10 Hyundai 5225 2013 FALSE

Fiesta Ford 3995 2009 TRUE

SQL commands take the following form:

SELECT <field>
FROM <tablename>
WHERE <condition>

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Example using the table above:

●​ SELECT Model
FROM Cars
WHERE Sold = FALSE

>> i10

You can also retrieve multiple fields at once, or apply multiple conditions, for example:

●​ SELECT Model, Manufacturer, Price
FROM Cars
WHERE Sold = True and Price > 4000

>> Polo, Volkswagen, 4995

The SQL wildcard *, can be used to represent all fields in the SELECT command:

●​ SELECT *
FROM Cars
WHERE Manufacturer = “Ford”

>> Fiesta, Ford, 3995, 2009, True

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What is a Subprogram?

A subprogram is a section of code which performs a specific task, and can be called
whenever it is needed to carry out that task. They are also called sub-routines.

There are two main types of subprograms:

●​ Functions: a type of subprogram that performs a task and returns a value.
For example:

○​ function density(mass, volume)
 d = mass / volume
 return d
endfunction

●​ Procedures: a type of subprogram that performs a task and does not return a

value.

○​ procedure greeting()
 print(“Hello World”)
endfunction

The variables which are found in the brackets of a subprogram are known as parameters.
These are values which can be passed into a subprogram when it is called, as in the
function above, ‘mass’ and ‘volume’ are both parameters.

To use a subprogram, you must call it in the main program, for example:

function density(mass, volume)
 d = mass / volume
 return d
endfunction

// Main program
userMass = input(“Enter mass”)
userVolume = input(“Enter volume”)
userDensity = density(userMass, userVolume) ← The function is called here

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Local and Global Variables

Local variables are those which are defined inside of a subprogram, and can only be used
inside of that subprogram. Local variables are overwritten in/removed from memory when
the subprogram they were created in ends.

Global variables are those which are defined in the main program and can be used
anywhere, including all subprograms and the main program.

Example:

function density(mass, volume)
 d = mass / volume ← ‘d’ is a local variable and can only be used in this function
 return d
endfunction

// Main program
userMass = input(“Enter mass”) ← ‘userMass’ is a global variable
userVolume = input(“Enter volume”)
userDensity = density(userMass, userVolume)

print(d) ← If we add this line in the main program we would get an error because ‘d’
does not exist in the main program, only in the ‘density’ function.

Why use Subprograms?

Subprograms are incredibly useful because they:

●​ Make code more structured and modular

●​ Allows code to be reused, without having to be repeated or rewritten

●​ Make programs easier to test and maintain; a subprogram only has to be tested once

●​ Allows shared workload by splitting the development of subprograms across a team

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What is Random Number Generation?

Random number generation is the ability to produce unpredictable numeric values within a
specified range. It can be used for a wide range of purposes, such as games (e.g. dice
throws), testing, or security (passwords).

Example (pseudocode):

num = RANDOM_INT(0, 6)

Example (Python):

num = random.randint(0, 6)

Note: the random.randint function in python is inclusive, meaning the numbers generated could be the
ones passed as parameters. In the above example this would include 0 and 6.

Typical Uses

●​ Rolling a die​

●​ Picking a random question or card​

●​ Generating test values for simulations​

●​ Randomly deciding outcomes in games (e.g. attack chance)

Good Practice

●​ Store the random value in a variable if it will be used more than once​

●​ Combine with loops or conditions for more dynamic outcomes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	Core Programming Statements
	Input and output statements may vary depending on if your code is written in program code (e.g. Python) or pseudocode. For example, output in Python would be done with ‘print()‘, whereas in pseudocode it is done with ‘output()‘.
	Programming Constructs
	There are three constructs used in algorithms, which help to make them structured, easy to understand, and control the flow of the program:
	1.​Sequence – instructions executed in order​
	2.​Selection – decisions (IF, ELSE)​
	3.​Iteration – repetition (WHILE, FOR)
	What Are Arithmetic Operations?
	Arithmetic operations are the basic mathematical calculations that can be performed in a programming language. These are essential for processing numerical data in algorithms and programs.
	Standard Arithmetic Operators
	Modulus returns the remainder of a division, for example, 7 % 4 would return 3.
	
	What Are Comparison Operations?
	Comparison operations are used to compare different items of data, and either return True or False.
	Standard Comparison Operators
	What Are Boolean Operations?
	Boolean operations are logical operators that work with Boolean values (True or False). They are used in conditions to control the flow of programs.
	Boolean Operators
	Boolean operators can be combined in complex logic, such as:
	What Are Data Types?
	Why Data Types Matter
	Casting Data Types
	What Is String Manipulation?
	String manipulation refers to measuring the length of strings, concatenating strings (joining strings together) or slicing strings (extracting substrings).
	What Is File Handling?
	File handling refers to the reading or writing to or from an external file.
	Files must be opened in either ‘read’ or ‘write’ mode and closed after all file operations have been performed.
	What Is a Data Structure?
	A data structure is a way of organising and storing related data so it can be used efficiently in a program. It helps manage collections of data.
	1. Records
	What is a record?
	Example:

	2. Arrays
	What is an array?
	Characteristics:
	One-Dimensional Array (1D)
	Two-Dimensional Array (2D)

	
	 Row
	What Is a Database?
	A database is used to store large amounts of data into organised tables. Each column will have a heading to define a field (column), for example:
	What Is Structured Query Language (SQL)?
	SQL is a language used to search for, manage, and manipulate data in a database.
	There are three main SQL commands: SELECT, FROM and WHERE.
	What is a Subprogram?
	A subprogram is a section of code which performs a specific task, and can be called whenever it is needed to carry out that task. They are also called sub-routines.
	Local and Global Variables
	Local variables are those which are defined inside of a subprogram, and can only be used inside of that subprogram. Local variables are overwritten in/removed from memory when the subprogram they were created in ends.
	Why use Subprograms?
	Subprograms are incredibly useful because they:
	●​Make code more structured and modular
	●​Allows code to be reused, without having to be repeated or rewritten
	●​Make programs easier to test and maintain; a subprogram only has to be tested once
	●​Allows shared workload by splitting the development of subprograms across a team
	
	What is Random Number Generation?
	Random number generation is the ability to produce unpredictable numeric values within a specified range. It can be used for a wide range of purposes, such as games (e.g. dice throws), testing, or security (passwords).
	Typical Uses
	Good Practice

